



| Mate                                 | erials                      |
|--------------------------------------|-----------------------------|
| Chemicals                            | Supplier                    |
| Fresh NR latex                       | RRII farm                   |
| Carbon blacks, HAF                   | Philips Carbon Black, Kochi |
| Precipitated Silica (Ultrasil<br>VN3 | Degussa A.G., Germany       |
| Nanoclay (Cloisite 93A)              | Southern Clay Products USA  |
|                                      |                             |
|                                      |                             |

![](_page_1_Figure_1.jpeg)

![](_page_2_Figure_0.jpeg)

![](_page_2_Figure_1.jpeg)

## **Mechanism of Coagulation**

- On addition of surfactants to the latex, they cause displacement of protein and get strongly adsorbed on rubber particles. In this way the protein stabilized latex gets transformed into a surfactant stabilized system.
- On addition of acids to the surfactant containing latex, the adsorbed anions react with acid to form an undissociated surfactant and deprive the latex particles of stabilizers. As a consequence, latex coagulates immediately.

![](_page_3_Picture_3.jpeg)

![](_page_4_Figure_0.jpeg)

| Ingredients                 | Quantity                                      |
|-----------------------------|-----------------------------------------------|
| Natural Rubber *            | 100                                           |
| Zinc Oxide                  | 5                                             |
| Stearicacid                 | 1.5                                           |
| HS**                        | 1                                             |
| HAF/Silica/Nanoclay         | 25/25/0 [M1], 25/25/3 [M2]                    |
|                             | 25/25/5 [M3], 25/25/10 [M4],<br>30/30/0 [M5]  |
| DEG***                      | 1                                             |
| MBTS****                    | 1.0                                           |
| DPG****                     | 0.2                                           |
| Sulphur                     | 2.5                                           |
| •                           | *excluding                                    |
| **2.2.4-tri meth<br>*** Di  | ıyl -1,2- dihydroquinoline<br>ethylene glycol |
| **** Mercapto I<br>***** Di | penzothiazole disulphide                      |

| ingreutents         | Quantity             |
|---------------------|----------------------|
| Natural rubber      | 100                  |
| ZnO                 | 5                    |
| Stearic acid        | 1.5                  |
| HS                  | 1                    |
| HAF/Silica/Nanoclay | 25/25[C1], 30/30[C5] |
| DEG                 | 1                    |
| MBTS                | 1.0                  |
| DPG                 | 0.2                  |
| Sulphur             | 2.5                  |

| Carbon<br>black/silica/                           | Latex Master Batch |                 |                 |                  |                 | Dry Mill Mix    |                 |  |
|---------------------------------------------------|--------------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|--|
| nanoclay                                          | 25/25/0<br>(M1)    | 25+25+3<br>(M2) | 25+25+5<br>(M3) | 25+25+10<br>(M4) | 30+30+0<br>(M5) | 25/25/0<br>(C1) | 30+30+0<br>(C5) |  |
| Torque<br>Max, dNm                                | 22.67              | 23.04           | 25.33           | 22.67            | 24.1            | 21.03           | 21.4            |  |
| Torque Min,<br>dNm                                | 2.43               | 2.41            | 2.84            | 2.08             | 2.2             | 2.39            | 2.18            |  |
| Optimum<br>cure time t <sub>90</sub><br>, minutes | 9.39               | 9.0             | 9.01            | 9.19             | 5.40            | 9.06            | 6.27            |  |
| Scorch<br>time,ts <sub>2</sub> ,<br>minutes       | 1.41               | 2.13            | 2.04            | 2.02             | 1.09            | 2.06            | 1.19            |  |
| Volume<br>fraction, Vr                            | 0.29               | 0.29            | 0.30            | 0.31             | 0.33            | 0.28            | 0.31            |  |

| 25/25/0 25/25/3 25/25/5 25/25/10 30/   (M1) (M2) (M3) (M4) (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | Latex Masterbatch |                 |                 |                  |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-----------------|-----------------|------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    | 25/25/0<br>(M1)   | 25/25/3<br>(M2) | 25/25/5<br>(M3) | 25/25/10<br>(M4) | 30/30/<br>(M5) |
| Mooney 110 112 115 120 1   Mooney Number of the second secon | Mooney<br>viscosity,<br>IL(1+4) 100 <sup>0</sup> C | 110               | 112             | 115             | 120              | 116            |

![](_page_6_Figure_1.jpeg)

| S/N                                  | Sample name                                                                                                                | Classification<br>of filler<br>distribution<br>(X)                    | Agglomerate<br>Count<br>(Y)                            |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
| M2                                   | 25/25/3 master batch                                                                                                       | 9.2                                                                   | 9.5                                                    |
| М3                                   | 25/25/5 master batch                                                                                                       | 9.8                                                                   | 9.9                                                    |
| M4                                   | 25/25/10 master batch                                                                                                      | 8.7                                                                   | 9.4                                                    |
| C1                                   | 25/25/ Dry mix                                                                                                             | 7.0                                                                   | 8.2                                                    |
| M4<br>C1<br>1 rep<br>on. Y-<br>ating | 25/25/10 master batch<br>25/25/ Dry mix<br>resents poor dispersion<br>value 1 represent maxin<br>of 10 represent the total | 8.7<br>7.0<br>while a rating of<br>num number of l<br>absence of aggl | 9.4<br>8.2<br>10 represent<br>arge agglomo<br>omerates |

![](_page_7_Figure_1.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_0.jpeg)

| Parameters                      |                 | L               | atex mas        | ter batch        |                 | Dry mill        | mix             |
|---------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Silica/carbon<br>black/nanoclay | 25/25/0<br>(M1) | 25/25/3<br>(M2) | 25/25/5<br>(M3) | 25/25/10<br>(M4) | 30/30/0<br>(M5) | 25/25/0<br>(C1) | 30/30/0<br>(C5) |
| Modulus 300%, MPa               | 10.8            | 11.69           | 14.85           | 12.1             | 14.8            | 7.2             | 12.7            |
| Tensile strength, MPa           | 25.3            | 25.74           | 25.85           | 25.4             | 25.6            | 24.5            | 24.7            |
| Elongation at break, %          | 570             | 553             | 471             | 527              | 460             | 620             | 484             |
| Tear Strength, kN/m             | 103             | 105.4           | 106             | 104.8            | 105             | 88              | 95              |
| Hardness, Shore A               | 66              | 68              | 74              | 70               | 68              | 58              | 64              |
| Heat Build-up, ∆T, ⁰C           | 16              | 13              | 14              | 16               | 17              | 21              | 22              |
| Abrasion loss, mm <sup>3</sup>  | 107             | 97.3            | 87.5            | 91.8             | 113             | 143             | 132             |

| Parameters                      |                 | N               | laster Bat      | tch              |                 | Mill Mix        |                 |
|---------------------------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Silica/carbon<br>black/nanoclay | 25/25/0<br>(M1) | 25/25/3<br>(M2) | 25/25/5<br>(M3) | 25/25/10<br>(M4) | 30/30/0<br>(M5) | 25/25/0<br>(C1) | 30/30/0<br>(C5) |
| Modulus 300%,<br>MPa            | 11.58           | 12.46           | 16.0            | 14.07            | 15.8            | 10.55           | 14.5            |
| Tensile<br>strength, MPa        | 22.0            | 24.28           | 23.8            | 23.9             | 23.5            | 21.78           | 23.0            |
| Elongation at<br>break, %       | 525             | 541             | 415             | 472              | 445             | 590             | 412             |

| OBS          | ERVATIONS                                                            |
|--------------|----------------------------------------------------------------------|
| The vu       | Icanizates prepared from master batches by the new method showed     |
| $\checkmark$ | higher tensile strength, higher modulus, hardness, and tear strength |
| $\checkmark$ | lower heat build-up, lower tan delta and abrasion loss               |
| $\checkmark$ | between master batch M3(25/25/5) & conventional mill mixed           |
|              | C1(25/25/0) are given below.                                         |
|              | $\checkmark$ Abrasion loss = -38.8%,                                 |
|              | ✓ Tan delta = - 20.42%,                                              |
|              | $\checkmark$ Heat build up = -33.3%                                  |
|              | $\checkmark$ Hardness = + 28%, Tear strength = +20.45%               |
|              | $\checkmark$ Tensile strength = +4%, M300 = +100%                    |
|              | It should be noted that for both master batch and dry mixed          |
| (            | compounds additives like process oil and coupling agents were        |
|              | not used                                                             |
|              |                                                                      |

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_13_Picture_0.jpeg)

| SI. No. | Ingredients | Percentage (%) |
|---------|-------------|----------------|
|         |             |                |
| 1       | Rubber      | 41.5           |
| 2       | Protein     | 2.2            |
| 3       | Resin       | 1.3            |
| 4       | Sugar       | 1.2            |
| 5       | Ash         | 0.8            |
| 6       | Water       | 55.0           |

| SI. No. | Parameter                    | ASTM  | HAF    |
|---------|------------------------------|-------|--------|
| 1       | lodine number, gm/kg         | D1510 | 81.6   |
| 2       | DBPA, cc/100gm               | D2414 | 100.5  |
| 3       | No.325 sieve residue,%       | D1514 | 0.048  |
| 4       | No.100 sieve residue,%       | D1514 | 0.003  |
| 5       | No.35 sieve residue,%        | D1514 | 0.0004 |
| 6       | Heat loss,%                  | D1509 | 0.4    |
| 7       | Fines, %                     | D1508 | 0.8    |
| 8       | Pour density, kg/m3          | D1513 | 380    |
| 9       | Compressed DBP, cc/100<br>gm | D3439 | 89     |

| SI. No. | Parameter                                     | Value |
|---------|-----------------------------------------------|-------|
| 1       | Specific surface area (N <sub>2</sub> ), m2/g | 175   |
| 2       | рH                                            | 6.2   |
| 3       | Heating loss,%                                | 5.5   |
| 4       | Tapped density, g/l                           | 220   |
| 5       | SiO <sub>2</sub> content, %                   | 98    |

| Treatment/Properties | Organic<br>Modifier (1)       | Modifier<br>Concentration                   | %<br>Moisture                        | % Weight<br>Loss on<br>Ignition |
|----------------------|-------------------------------|---------------------------------------------|--------------------------------------|---------------------------------|
| Cloisite® 93A        | M2HT                          | 95 meq/100g<br>clay                         | < 2%                                 | 39.5%                           |
| Dry Particle S       | Sizes: (microns, t            | by volume),10% l<br>50% l<br>90% less than: | ess than: 2µ<br>ess than: 6µ<br>13µm | um,<br>um ,                     |
| Density              | Loose Bulk,<br>lbs/ft3= 10.56 | Packed Bulk,<br>lbs/ft3 =18.03              | Density, g/cc =1.88                  |                                 |
| <i>///</i>           |                               |                                             |                                      |                                 |